同一时刻有 位车主带着他们的爱车来到了汽车维修中心。维修中心共有 位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这 位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
链接
题解
为每辆车建立点,为每个技术人员的每一次修车建立点。
设第 个技术人员修第 辆车所用时间为 ,第 辆车的点为 ,第 个技术人员倒数第 次修车(此时有 个人在等待)的点为 ()。
从源点向每辆车连边,容量为 1,费用为 0;从每个 向每个 连边,容量为 1,费用为 ;从每个 向汇点连边,容量为 1,费用为 0。
代码
#include <cstdio>
#include <climits>
#include <algorithm>
#include <queue>
const int MAXN = 60;
const int MAXM = 9;
const int MAXT = 1000;
struct Node;
struct Edge;
struct Node {
Edge *firstEdge, *inEdge;
int flow, dist;
bool inQueue;
} nodes[MAXN + MAXM * MAXN + 2];
struct Edge {
Node *from, *to;
int flow, capacity, cost;
Edge *next, *reversedEdge;
Edge(Node *from, Node *to, int capacity, int cost) : from(from), to(to), flow(0), capacity(capacity), cost(cost), next(from->firstEdge) {}
};
struct Dinic {
bool bellmanford(Node *s, Node *t, int n, int &flow, int &cost) {
for (int i = 0; i < n; i++) {
nodes[i].inEdge = NULL;
nodes[i].flow = 0;
nodes[i].dist = INT_MAX;
nodes[i].inQueue = false;
}
std::queue<Node *> q;
q.push(s);
s->flow = INT_MAX;
s->dist = 0;
while (!q.empty()) {
Node *v = q.front();
q.pop();
v->inQueue = false;
for (Edge *e = v->firstEdge; e; e = e->next) {
if (e->flow < e->capacity && e->to->dist > v->dist + e->cost) {
e->to->dist = v->dist + e->cost;
e->to->inEdge = e;
e->to->flow = std::min(v->flow, e->capacity - e->flow);
if (!e->to->inQueue) {
e->to->inQueue = true;
q.push(e->to);
}
}
}
}
if (t->dist == INT_MAX) return false;
for (Edge *e = t->inEdge; e; e = e->from->inEdge) {
e->flow += t->flow;
e->reversedEdge->flow -= t->flow;
}
flow += t->flow;
cost += t->flow * t->dist;
return true;
}
void operator()(int s, int t, int n, int &flow, int &cost) {
flow = cost = 0;
while (bellmanford(&nodes[s], &nodes[t], n, flow, cost));
}
} edmondskarp;
inline void addEdge(int from, int to, int capacity, int cost) {
nodes[from].firstEdge = new Edge(&nodes[from], &nodes[to], capacity, cost);
nodes[to].firstEdge = new Edge(&nodes[to], &nodes[from], 0, -cost);
nodes[from].firstEdge->reversedEdge = nodes[to].firstEdge, nodes[to].firstEdge->reversedEdge = nodes[from].firstEdge;
}
int n, m, time[MAXM][MAXN];
inline int hash(int j, int k) {
return n + (j - 1) * n + k;
}
int main() {
scanf("%d %d", &m, &n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
scanf("%d", &time[j][i]);
}
}
const int s = 0, t = n + n * m + 1;
//printf("s = %d, t = %d\n", s, t);
for (int i = 1; i <= n; i++) {
addEdge(s, i, 1, 0);
}
for (int j = 1; j <= m; j++) {
for (int k = 1; k <= n; k++) {
addEdge(hash(j, k), t, 1, 0);
for (int i = 1; i <= n; i++) {
//printf("%d -> %d\n", i, hash(j, k));
addEdge(i, hash(j, k), 1, time[j - 1][i - 1] * k);
}
}
}
int flow, cost;
edmondskarp(s, t, n + n * m + 2, flow, cost);
printf("%.2lf\n", (double)cost / (double)n);
return 0;
}
吐槽
又一次把 、 读入倒了 ……
又一次敲错 EK 模板 ……
hehe