有 n
件工作要分配给 n
个人做。第 i
个人做第 j
件工作产生的效益为 c[i][j]
。试设计一个将 n
件工作分配给 n
个人做的分配方案,使产生的总效益最大。
链接
题解
把工作和人放在网络流模型中,可以发现这是一张二分图,问题转化为从图中选取一些边,使这些边没有交点(没有人做重复的工作,没有工作被重复做),并且边权总和最大。即二分图最大权匹配。
建立源点与汇点,从源点向每个人连一条边,容量为 1(每个人只能匹配一次),费用为 0;从每个工作到汇点连一条边,容量为 1(每个工作只能匹配一次),费用为 0;从每个人向每个工作连一条边,容量为 0,费用为效益的相反数。求出网络的最小费用最大流,所得费用的相反数即为最大权匹配。
代码
#include <cstdio>
#include <climits>
#include <algorithm>
#include <queue>
const int MAXN = 100;
struct Node;
struct Edge;
struct Node {
Edge *firstEdge, *inEdge;
int dist, flow;
bool inQueue;
} nodes[MAXN + MAXN + 2];
struct Edge {
Node *from, *to;
int capacity, flow, cost;
Edge *next, *reversedEdge;
Edge(Node *from, Node *to, int capacity, int cost) : from(from), to(to), next(from->firstEdge), capacity(capacity), flow(0), cost(cost) {}
};
int n, a[MAXN][MAXN];
struct EdmondsKarp {
bool bellmanford(Node *s, Node *t, int n, int &flow, int &cost) {
for (int i = 0; i < n; i++) {
nodes[i].dist = INT_MAX;
nodes[i].inEdge = NULL;
nodes[i].flow = 0;
nodes[i].inQueue = false;
}
std::queue<Node *> q;
q.push(s);
s->dist = 0;
s->flow = INT_MAX;
while (!q.empty()) {
Node *v = q.front();
q.pop();
v->inQueue = false;
for (Edge *e = v->firstEdge; e; e = e->next) {
if (e->flow < e->capacity && e->to->dist > v->dist + e->cost) {
e->to->dist = v->dist + e->cost;
e->to->inEdge = e;
e->to->flow = std::min(v->flow, e->capacity - e->flow);
if (!e->to->inQueue) {
e->to->inQueue = true;
q.push(e->to);
}
}
}
}
if (t->dist == INT_MAX) return false;
for (Edge *e = t->inEdge; e; e = e->from->inEdge) {
e->flow += t->flow;
e->reversedEdge->flow -= t->flow;
}
flow += t->flow;
cost += t->dist * t->flow;
return true;
}
void operator()(int s, int t, int n, int &flow, int &cost) {
flow = cost = 0;
while (bellmanford(&nodes[s], &nodes[t], n, flow, cost));
}
} edmondskarp;
inline void addEdge(int from, int to, int capacity, int cost) {
nodes[from].firstEdge = new Edge(&nodes[from], &nodes[to], capacity, cost);
nodes[to].firstEdge = new Edge(&nodes[to], &nodes[from], 0, -cost);
nodes[from].firstEdge->reversedEdge = nodes[to].firstEdge, nodes[to].firstEdge->reversedEdge = nodes[from].firstEdge;
}
inline int solve(int d) {
for (int i = 0; i < n + n + 2; i++) {
Edge *next;
for (Edge *&e = nodes[i].firstEdge; e; next = e->next, delete e, e = next);
}
const int s = 0, t = n + n + 1;
for (int i = 1; i <= n; i++) {
addEdge(s, i, 1, 0);
addEdge(n + i, t, 1, 0);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
addEdge(i, n + j, 1, a[i - 1][j - 1] * d);
}
}
int flow, cost;
edmondskarp(s, t, n + n + 2, flow, cost);
return cost * d;
}
int main() {
freopen("job.in", "r", stdin);
freopen("job.out", "w", stdout);
scanf("%d", &n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%d", &a[i][j]);
}
}
printf("%d\n", solve(1));
printf("%d\n", solve(-1));
fclose(stdin);
fclose(stdout);
return 0;
}