现有 n
个太空站位于地球与月球之间,且有 m
艘太空船在其间来回穿梭。每个太空站可容纳无限多的人,第 i
个太空船只可容纳 H[i]
个人。每艘太空船将周期性地停靠一系列的太空站。每一艘太空船从一个太空站驶往任一太空站耗时均为 1。人们只能在太空船停靠太空站(或月球、地球)时上、下船。初始时所有人全在地球上,太空船全在初始站。求让所有人尽快地全部转移到月球上的最短时间。
链接
题解
话说这题真是难调 …… qwq
考虑到『一个太空站和一个时间点』确定了一个状态,枚举答案 t
,将每个太空站拆成 t + 1
个点(因为初始状态是在 0 时刻)。对于每一个时刻,从上一时刻每个太空船的停留站到这一时刻每个太空船的停留站连一条边,容量为该太空船载客量;对于任何一个太空站,从上一时刻到这一时刻连一条边,容量为正无穷(表示人停留在太空站);对于任意时刻的地球,从源点向其连一条边,容量为正无穷;对于任意时刻的月球,从其向汇点连一条边,容量为正无穷。
从小到大枚举答案,答案每增大 1,在原图中加入新边。直到汇点的流量大于等于总人数,则答案合法。
也可以二分答案 …… 不过那样要拆掉图重建,总感觉数据小的情况下比枚举还要慢。qwq
数据范围有坑!数据范围有坑!数据范围有坑!n
和 m
的最大值颠倒了!
代码
#include <cstdio>
#include <climits>
#include <algorithm>
#include <queue>
#include <vector>
const int MAXN = 13;
const int MAXM = 20;
const int MAXK = 50;
struct Node;
struct Edge;
struct Node {
Edge *firstEdge, *currentEdge;
int level;
//char info[256];
} nodes[MAXN * (MAXN + 2) * (MAXM + 1) * MAXK * 2 + 2];
struct Edge {
Node *from, *to;
int capacity, flow;
Edge *next, *reversedEdge;
Edge(Node *from, Node *to, int capacity) : from(from), to(to), capacity(capacity), flow(0), next(from->firstEdge) {}
};
int n, m, k, a[MAXM];
std::vector<int> v[MAXM];
std::vector<int>::const_iterator currentStation[MAXM];
inline void print(Node *v) {
//printf("%s", v->info);
return;
//int x = (int)(v - nodes);
//if (x == 0) putchar('s');
//else if (x == n * (n + 2) * (m + 1) * k * 2 + 1) putchar('t');
//else {
// printf("{ day: %d, station: %d }", x / (n + 2), x % (n + 2) - 2);
//}
}
struct Dinic {
bool makeLevelGraph(Node *s, Node *t, int n) {
for (int i = 0; i < n; i++) nodes[i].level = 0;
std::queue<Node *> q;
q.push(s);
s->level = 1;
while (!q.empty()) {
Node *v = q.front();
q.pop();
for (Edge *e = v->firstEdge; e; e = e->next) {
if (e->flow < e->capacity && e->to->level == 0) {
//print(e->from);
//printf(" -> ");
//print(e->to);
//putchar('\n');
e->to->level = v->level + 1;
if (e->to == t) return true;
else q.push(e->to);
}
}
}
return false;
}
int findPath(Node *s, Node *t, int limit = INT_MAX) {
if (s == t) return limit;
for (Edge *&e = s->currentEdge; e; e = e->next) {
if (e->flow < e->capacity && e->to->level == s->level + 1) {
int flow = findPath(e->to, t, std::min(e->capacity - e->flow, limit));
if (flow > 0) {
//printf("(%d)\n", (int)(s - nodes));
e->flow += flow;
e->reversedEdge->flow -= flow;
return flow;
}
}
}
return 0;
}
int operator()(int s, int t, int n) {
for (int i = 0; i < n; i++) {
for (Edge *e = nodes[i].firstEdge; e; e = e->next) {
e->flow = 0;
}
}
int ans = 0;
while (makeLevelGraph(&nodes[s], &nodes[t], n)) {
for (int i = 0; i < n; i++) nodes[i].currentEdge = nodes[i].firstEdge;
int flow;
while ((flow = findPath(&nodes[s], &nodes[t])) > 0) ans += flow;
}
return ans;
}
} dinic;
inline void addEdge(int from, int to, int capacity) {
//printf("\t\t%d\n", capacity);
nodes[from].firstEdge = new Edge(&nodes[from], &nodes[to], capacity);
nodes[to].firstEdge = new Edge(&nodes[to], &nodes[from], 0);
nodes[from].firstEdge->reversedEdge = nodes[to].firstEdge, nodes[to].firstEdge->reversedEdge = nodes[from].firstEdge;
}
inline int stationID(int station, int day) {
//sprintf(nodes[day * (n + 2) + station].info, "{ day: %d, station: %d }", day, station - 2);
return day * (n + 2) + station;
}
inline int solve() {
const int s = 0, t = n * (n + 2) * (m + 1) * k * 2 + 1;
//nodes[s].info[0] = 's';
//nodes[t].info[0] = 't';
//puts("s --> { day: 0, station: 0 }");
addEdge(s, stationID(2, 0), INT_MAX);
//puts("s --> { day: 0, station: -1 }");
addEdge(stationID(1, 0), t, INT_MAX);
for (int i = 1; i <= (n + 2) * (m + 1) * k * 2; i++) {
for (int j = 1; j <= m; j++) {
int oldStation = *currentStation[j - 1];
currentStation[j - 1]++;
if (currentStation[j - 1] == v[j - 1].end()) currentStation[j - 1] = v[j - 1].begin();
int newStation = *currentStation[j - 1];
//printf("{ day: %d, station: %d } --> { day: %d, station: %d }\n", i - 1, oldStation - 2, i, newStation - 2);
addEdge(stationID(oldStation, i - 1), stationID(newStation, i), a[j - 1]);
}
//printf("s --> { day: %d, station: 0 }\n", i);
//printf("{ day: %d, station: -1 } --> t\n", i);
addEdge(stationID(1, i), t, INT_MAX);
addEdge(s, stationID(2, i), INT_MAX);
for (int j = 3; j <= n + 2; j++) {
//printf("{ day: %d, station: %d } --> { day: %d, station: %d }\n", i - 1, j - 2, i, j - 2);
addEdge(stationID(j, i - 1), stationID(j, i), INT_MAX);
}
int flow = dinic(s, t, n * (n + 2) * (m + 1) * k * 2 + 2);
//printf("%d\n", flow);
if (flow >= k) return i;
}
return 0;
}
int main() {
//printf("%d\n", sizeof(nodes));
freopen("home.in", "r", stdin);
freopen("home.out", "w", stdout);
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < m; i++) {
scanf("%d", &a[i]);
int t;
scanf("%d", &t);
for (int j = 0; j < t; j++) {
int x;
scanf("%d", &x);
v[i].push_back(x + 2);
}
currentStation[i] = v[i].begin();
}
printf("%d\n", solve());
fclose(stdin);
fclose(stdout);
return 0;
}