对于第 行第 列的区域,建造商业区将得到 收益,建造工业区将得到 收益。另外不同的区域连在一起可以得到额外的收益,即如果区域 相邻(相邻是指两个格子有公共边)有 块(显然 不超过 )类型不同于 的区域,则这块区域能增加 收益。求最大收益。
链接
题解
黑白染色,从源点到所有 点连边,容量为 ,从源点到所有 点连边,容量为 ;从所有 点到汇点连边,容量为 ,从所有 点向汇点连边,容量为 。
对于相邻的点,之间连一条容量为 的无向边。
考虑相邻的两个点,如果都割源点方向的边或都割汇点方向的边,则不需要割中间的边;如果一个割源点方向的边,另一个割汇点方向的边,则需要同时割掉中间的边,此时两个点对应区域建造相同。
所有可能获得的收益减去最小割即为答案。
代码
#include <cstdio>
#include <climits>
#include <algorithm>
#include <queue>
const int MAXN = 100;
struct Node;
struct Edge;
struct Node {
Edge *e, *c;
int l;
} N[MAXN * MAXN + 2];
struct Edge {
Node *t;
int c;
Edge *next, *r;
Edge(Node *s, Node *t, const int c) : t(t), c(c), next(s->e) {}
};
struct Dinic {
bool makeLevelGraph(Node *s, Node *t, const int n) {
for (int i = 0; i < n; i++) N[i].l = 0, N[i].c = N[i].e;
std::queue<Node *> q;
q.push(s);
s->l = 1;
while (!q.empty()) {
Node *v = q.front();
q.pop();
for (Edge *e = v->e; e; e = e->next) if (!e->t->l && e->c) {
e->t->l = v->l + 1;
if (e->t == t) return true;
else q.push(e->t);
}
}
return false;
}
int findPath(Node *s, Node *t, const int limit = INT_MAX) {
if (s == t) return limit;
for (Edge *&e = s->c; e; e = e->next) if (e->t->l == s->l + 1 && e->c) {
int f = findPath(e->t, t, std::min(limit, e->c));
if (f) {
e->c -= f, e->r->c += f;
return f;
}
}
return 0;
}
int operator()(const int s, const int t, const int n) {
int res = 0;
while (makeLevelGraph(&N[s], &N[t], n)) {
int f;
while ((f = findPath(&N[s], &N[t])) > 0) res += f;
}
return res;
}
} dinic;
inline void addEdge(const int s, const int t, const int c, const int rc = 0) {
N[s].e = new Edge(&N[s], &N[t], c);
N[t].e = new Edge(&N[t], &N[s], rc);
(N[s].e->r = N[t].e)->r = N[s].e;
}
int n, m;
inline int id(const int i, const int j) { return (i - 1) * m + j; }
int main() {
scanf("%d %d", &n, &m);
int sum = 0;
const int s = 0, t = n * m + 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int x;
scanf("%d", &x);
sum += x;
if ((i + j) % 2 == 0) addEdge(s, id(i, j), x);
else addEdge(id(i, j), t, x);
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int x;
scanf("%d", &x);
sum += x;
if ((i + j) % 2 != 0) addEdge(s, id(i, j), x);
else addEdge(id(i, j), t, x);
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int x;
scanf("%d", &x);
if (i != 1) addEdge(id(i - 1, j), id(i, j), x, x), sum += x;
if (i != n) addEdge(id(i + 1, j), id(i, j), x, x), sum += x;
if (j != 1) addEdge(id(i, j - 1), id(i, j), x, x), sum += x;
if (j != m) addEdge(id(i, j + 1), id(i, j), x, x), sum += x;
}
}
const int maxFlow = dinic(s, t, n * m + 2);
printf("%d\n", sum - maxFlow);
return 0;
}