在一个 行 列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外。
每行每列中相邻石柱的距离为 ,蜥蜴的跳跃距离是 ,即蜥蜴可以跳到平面曼哈顿距离不超过 的任何一个石柱上。
石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减 (如果仍然落在地图内部,则到达的石柱高度不变),如果该石柱原来高度为 ,则蜥蜴离开后消失。以后其他蜥蜴不能落脚。
任何时刻不能有两只蜥蜴在同一个石柱上。
链接
题解
网络流,从每个点向所有与其曼哈顿距离在 以内的点连双向边,对每个点设置流量限制为石柱高度,蜥蜴数量减去最大流即为答案。
代码
#include <cstdio>
#include <climits>
#include <algorithm>
#include <queue>
const int MAXN = 20;
const int MAXD = 4;
struct Node;
struct Edge;
struct Node {
Edge *e, *c;
int l;
} N[MAXN * MAXN * 2 + 2];
struct Edge {
Node *s, *t;
int f, c;
Edge *next, *r;
Edge(Node *s, Node *t, const int c) : s(s), t(t), f(0), c(c), next(s->e) {}
};
struct Dinic {
bool makeLevelGraph(Node *s, Node *t, const int n) {
for (int i = 0; i < n; i++) N[i].l = 0, N[i].c = N[i].e;
std::queue<Node *> q;
q.push(s);
s->l = 1;
while (!q.empty()) {
Node *v = q.front();
q.pop();
for (Edge *e = v->e; e; e = e->next) if (!e->t->l && e->f < e->c) {
e->t->l = v->l + 1;
if (e->t == t) return true;
else q.push(e->t);
}
}
return false;
}
int findPath(Node *s, Node *t, const int limit = INT_MAX) {
if (s == t) return limit;
for (Edge *&e = s->c; e; e = e->next) if (e->t->l == s->l + 1 && e->f < e->c) {
int f = findPath(e->t, t, std::min(limit, e->c - e->f));
if (f) {
e->f += f, e->r->f -= f;
return f;
}
}
return 0;
}
int operator()(const int s, const int t, const int n) {
int res = 0;
while (makeLevelGraph(&N[s], &N[t], n)) {
int f;
while ((f = findPath(&N[s], &N[t])) > 0) res += f;
}
return res;
}
} dinic;
inline void addEdge(const int s, const int t, const int c) {
// printf("addEdge(%d, %d, %d)\n", s, t, c);
N[s].e = new Edge(&N[s], &N[t], c);
N[t].e = new Edge(&N[t], &N[s], 0);
(N[s].e->r = N[t].e)->r = N[s].e;
}
int n, m;
inline int id(const int i, const int j, const int l) {
return l * n * m + i * m + j + 1;
}
int main() {
int d;
scanf("%d %d %d", &n, &m, &d);
/*
printf("%d -> %d\n", id(2, 2, 1), id(2, 2, 0));
printf("%d -> %d\n", id(2, 2, 0), id(2, 2, 2));
printf("%d -> %d\n", id(2, 2, 2), id(2, 1, 1));
printf("%d -> %d\n", id(2, 1, 1), id(3, 1, 0));
printf("%d -> %d\n", id(3, 1, 0), id(3, 1, 2));
printf("%d -> %d\n", id(3, 1, 2), id(3, 0, 1));
*/
/*
for (int h = 0; h <= d; h++) for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) printf("%d\n", id(i, j, h));
printf("t = %d\n", n * m * (d + 1) + 1);
return 0;
*/
const int s = 0, t = n * m * 2 + 1;
for (int i = 0; i < n; i++) {
static char buf[MAXN + 1];
scanf("%s", buf);
for (int j = 0; j < m; j++) {
addEdge(id(i, j, 0), id(i, j, 1), buf[j] - '0');
}
}
int cnt = 0;
for (int i = 0; i < n; i++) {
static char buf[MAXN + 1];
scanf("%s", buf);
for (int j = 0; j < m; j++) {
if (buf[j] == 'L') addEdge(s, id(i, j, 0), 1), cnt++;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
for (int k = 0; k < n; k++) {
for (int l = 0; l < m; l++) {
if (abs(i - k) + abs(j - l) <= d) {
addEdge(id(i, j, 1), id(k, l, 0), INT_MAX);
addEdge(id(k, l, 1), id(i, j, 0), INT_MAX);
}
}
}
if (i < d || i > n - d - 1 || j < d || j > m - d - 1) addEdge(id(i, j, 1), t, INT_MAX);
}
}
int ans = dinic(s, t, n * m * 2 + 2);
printf("%d\n", cnt - ans);
return 0;
}