给定 ()个点,在平面上固定其位置,求这些点最多能组成多少个不同的无向连通图。
链接
题解
统计连通图的方案数是困难的,但我们可以轻易地计算出用 N 个点组成任意图的方案数:因为 N 个点的无向图最多有 条边,考虑每条边选或不选,则共有 种不同的图。
求出任意图的方案数后,只要再求出非连通图的方案数,就可以得到答案。考虑 个点组成的非连通图中的点 ,它一定处于一个由 ()个点组成的连通分量中,点 确定后,组成这个连通分量还需要 个点,总方案数为 ;每个连通分量都是一个连通图,可以递归来求;考虑完一个连通分量,图的剩余部分(与该连通分量隔离的 个点)是一个任意图,也可以递归来求。
设 个点组成连通图的方案数为 、组成非连通图的方案数为 、组成任意图的方案数为 ,则递归计算 的公式为:
需要使用高精度。
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
const int MAXN = 50;
struct BigInt;
BigInt &countConnectedGraphs(int n);
BigInt &countNonConnectedGraphs(int n);
inline BigInt &countAllGraphs(int n);
struct BigInt {
std::vector<char> v;
BigInt() {
*this = 0;
}
BigInt(int x) {
*this = x;
}
BigInt &operator=(int x) {
v.clear();
do v.push_back(x % 10); while (x /= 10);
return *this;
}
BigInt &operator=(const BigInt &x) {
v.resize(x.v.size());
memcpy(const_cast<char *>(v.data()), x.v.data(), x.v.size() * sizeof(char));
return *this;
}
};
std::ostream &operator<<(std::ostream &out, const BigInt &x) {
for (int i = x.v.size() - 1; i >= 0; i--) out << (char)(x.v[i] + '0');
return out;
}
BigInt operator+(const BigInt &a, const BigInt &b) {
BigInt result;
result.v.clear();
bool flag = false;
for (int i = 0; i < (int)std::max(a.v.size(), b.v.size()); i++) {
int tmp = 0;
if (i < (int)a.v.size()) tmp += a.v[i];
if (i < (int)b.v.size()) tmp += b.v[i];
if (flag) tmp++, flag = false;
if (tmp >= 10) tmp -= 10, flag = true;
result.v.push_back(tmp);
}
if (flag) result.v.push_back(1);
return result;
}
BigInt &operator+=(BigInt &a, const BigInt &b) {
return a = a + b;
}
BigInt operator-(const BigInt &a, const BigInt &b) {
BigInt result;
result.v.clear();
bool flag = false;
for (int i = 0; i < (int)a.v.size(); i++) {
int tmp = a.v[i];
if (i < (int)b.v.size()) tmp -= b.v[i];
if (flag) tmp--, flag = false;
if (tmp < 0) tmp += 10, flag = true;
result.v.push_back(tmp);
}
int size = result.v.size();
while (size > 1 && result.v[size - 1] == 0) size--;
result.v.resize(size);
return result;
}
BigInt operator*(const BigInt &a, const BigInt &b) {
BigInt result;
result.v.resize(a.v.size() + b.v.size());
for (int i = 0; i < (int)a.v.size(); i++) {
for (int j = 0; j < (int)b.v.size(); j++){
result.v[i + j] += a.v[i] * b.v[j];
result.v[i + j + 1] += result.v[i + j] / 10;
result.v[i + j] %= 10;
}
}
int size = result.v.size();
while (size > 1 && result.v[size - 1] == 0) size--;
result.v.resize(size);
return result;
}
BigInt combo[MAXN + 1][MAXN + 1];
inline void makeComboTable() {
for (int i = 1; i <= MAXN; i++) {
combo[i][0] = combo[i][i] = 1;
for (int j = 1; j < i; j++){
combo[i][j] = combo[i - 1][j] + combo[i - 1][j - 1];
}
}
}
inline BigInt &C(int n, int k) {
return combo[n][k];
}
BigInt &countConnectedGraphs(int n) {
static bool calced[MAXN + 1];
static BigInt mem[MAXN + 1];
BigInt &ans = mem[n];
if (calced[n]) return ans;
calced[n] = true;
ans = countAllGraphs(n) - countNonConnectedGraphs(n);
return ans;
}
BigInt &countNonConnectedGraphs(int n) {
static bool calced[MAXN + 1];
static BigInt mem[MAXN + 1];
BigInt &ans = mem[n];
if (calced[n]) return ans;
calced[n] = true;
for (int k = 1; k <= n - 1; k++) {
ans += C(n - 1, k - 1) * countConnectedGraphs(k) * countAllGraphs(n - k);
}
return ans;
}
inline BigInt &countAllGraphs(int n) {
static bool calced[MAXN + 1];
static BigInt mem[MAXN + 1];
BigInt &ans = mem[n];
if (calced[n]) return ans;
calced[n] = true;
BigInt x = 2;
int t = n * (n - 1) / 2;
for (ans = 1; t; t >>= 1, x = x * x) {
if (t & 1) ans = ans * x;
}
return ans;
}
int main() {
makeComboTable();
for (int n; ~scanf("%d", &n) && n > 0; ) {
std::cout << countConnectedGraphs(n) << std::endl;
}
return 0;
}