在一个 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘上某些方格设置了障碍,骑士不得进入。问最多可以在棋盘上放多少个其实。
链接
题解
在题图中可以发现,每个马可以攻击的格子都在与自身颜色不同的格子上,即整个棋盘可以建立为二分图,并使能互相攻击到的格子位于不同的两列。
根据定理,二分图最大独立集即为最小点覆盖集的补集,而最小点覆盖集可以用最小割模型来求解。
建立源点 S 和汇点 T,对于二分图中每个 X 点集中的点,从 S 向其连一条边,容量为点权;对于每个 Y 点集中的点,从该点向汇点连一条边,容量为点权;对于原图中的每条边,转化为从 X 点集的点连接到 Y 点集中的点的边,容量为无穷大。求出最小割,则该最小割为简单割,即任意一条割边不可能是中间那条无穷大的边,而这些割边恰好不重复的覆盖了整个二分图中的所有点,并且权值和最小。
——摘自《「COGS 734」方格取数 - 二分图最大独立集》
代码
#include <cstdio>
#include <climits>
#include <algorithm>
#include <queue>
const int MAXN = 200;
const int MAXM = MAXN * MAXN;
struct Point {
int x, y;
Point(int x, int y) : x(x), y(y) {}
Point operator+(const Point &pt) const {
return Point(x + pt.x, y + pt.y);
}
};
const Point turns[8] = {
Point(1, 2),
Point(2, 1),
Point(-1, -2),
Point(-2, -1),
Point(1, -2),
Point(-2, 1),
Point(-1, 2),
Point(2, -1)
};
struct Node;
struct Edge;
struct Node {
Edge *firstEdge, *currentEdge;
int level;
} nodes[MAXN * MAXN + 2];
struct Edge {
Node *from, *to;
int capacity, flow;
Edge *next, *reversedEdge;
Edge(Node *from, Node *to, int capacity) : from(from), to(to), capacity(capacity), flow(0), next(from->firstEdge) {}
};
int n, m;
bool blocked[MAXN][MAXN];
struct Dinic {
bool makeLevelGraph(Node *s, Node *t, int n) {
for (int i = 0; i < n; i++) nodes[i].level = 0, nodes[i].currentEdge = nodes[i].firstEdge;
std::queue<Node *> q;
q.push(s);
s->level = 1;
while (!q.empty()) {
Node *v = q.front();
q.pop();
for (Edge *e = v->firstEdge; e; e = e->next) {
if (e->flow < e->capacity && e->to->level == 0) {
e->to->level = v->level + 1;
if (e->to == t) return true;
else q.push(e->to);
}
}
}
return false;
}
int findPath(Node *s, Node *t, int limit = INT_MAX) {
if (s == t) return limit;
for (Edge *&e = s->currentEdge; e; e = e->next) {
if (e->flow < e->capacity && e->to->level == s->level + 1) {
int flow = findPath(e->to, t, std::min(limit, e->capacity - e->flow));
if (flow > 0) {
e->flow += flow;
e->reversedEdge->flow -= flow;
return flow;
}
}
}
return 0;
}
int operator()(int s, int t, int n) {
int ans = 0;
while (makeLevelGraph(&nodes[s], &nodes[t], n)) {
int flow;
while ((flow = findPath(&nodes[s], &nodes[t])) > 0) ans += flow;
}
return ans;
}
} dinic;
inline void addEdge(int from, int to, int capacity) {
nodes[from].firstEdge = new Edge(&nodes[from], &nodes[to], capacity);
nodes[to].firstEdge = new Edge(&nodes[to], &nodes[from], 0);
nodes[from].firstEdge->reversedEdge = nodes[to].firstEdge, nodes[to].firstEdge->reversedEdge = nodes[from].firstEdge;
}
inline int getNodeID(int x, int y) {
return y * n + x + 1;
}
int main() {
freopen("knight.in", "r", stdin);
freopen("knight.out", "w", stdout);
scanf("%d %d", &n, &m);
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d %d", &x, &y), x--, y--;
blocked[x][y] = true;
}
const int s = 0, t = n * n + 1;
int sum = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (blocked[i][j]) continue;
sum++;
int id = getNodeID(i, j);
if ((i + j) % 2 == 0) {
//printf("S => (%d, %d)\n", i + 1, j + 1);
addEdge(s, id, 1);
for (int k = 0; k < 8; k++) {
Point pt = Point(i, j) + turns[k];
if (pt.x < 0 || pt.x > n - 1 || pt.y < 0 || pt.y > n - 1 || blocked[pt.x][pt.y]) continue;
//printf("(%d, %d) => (%d, %d)\n", i + 1, j + 1, pt.x + 1, pt.y + 1);
addEdge(id, getNodeID(pt.x, pt.y), INT_MAX);
}
} else addEdge(id, t, 1);//, printf("(%d, %d) => T\n", i + 1, j + 1);
}
}
int maxFlow = dinic(s, t, n * n + 2);
printf("%d\n", sum - maxFlow);
fclose(stdin);
fclose(stdout);
return 0;
}