G 公司有 n
个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等。如何用最少搬运量可以使 n
个仓库的库存数量相同。搬运货物时,只能在相邻的仓库之间搬运。
链接
题解
这道题猛地看上去有点像之前写过的一道贪心 —— 均分纸牌,那道题只要把每一个数减去平均数,然后从左到右累加,特判一下零就好。但这题难点在于是环形的。
首先,还是要将每个仓库中的库存数量减去平均数,目标便转化为把正数全部加到负数中。『只能在相邻的仓库之间搬运』这一条件,让人很容易想到在相邻仓库之间连边,但稍微思考一下就会发现这样是不行的,因为有时候需要将货物重复移动多次才能到达目的仓库。
不妨只考虑最终的结果 —— 正数最后都要被移动到负数里面。在相邻的仓库之间转移,单位代价是 1,则隔着多个位置的仓库之间转移的代价就是两间仓库的最短距离,环中两点的最短路只有两种情况,顺时针走或者逆时针走,预处理出来就好。
从源点向每个库存量为正数的点连一条边,容量为库存量,费用为 0;从每个库存量为负数的点向汇点连一条边,容量为库存量的相反数,费用为 0;从每个库存量为正数的点向每个库存量为负数的点连一条边,容量为正无穷,费用为两间仓库的最短距离,求出最小费用最大流,则费用即为答案。
代码
#include <cstdio>
#include <cstdlib>
#include <climits>
#include <algorithm>
#include <queue>
const int MAXN = 100;
struct Node;
struct Edge;
struct Node {
Edge *firstEdge, *inEdge;
int flow, dist;
bool inQueue;
} nodes[MAXN + 2];
struct Edge {
Node *from, *to;
int flow, capacity, cost;
Edge *next, *reversedEdge;
Edge(Node *from, Node *to, int capacity, int cost) : from(from), to(to), capacity(capacity), flow(0), cost(cost), next(from->firstEdge) {}
};
int n, a[MAXN], dist[MAXN][MAXN];
struct EdmondsKarp {
bool bellmanford(Node *s, Node *t, int n, int &flow, int &cost) {
for (int i = 0; i < n; i++) {
nodes[i].inEdge = NULL;
nodes[i].flow = 0;
nodes[i].dist = INT_MAX;
nodes[i].inQueue = false;
}
std::queue<Node *> q;
q.push(s);
s->flow = INT_MAX;
s->dist = 0;
while (!q.empty()) {
Node *v = q.front();
q.pop();
v->inQueue = false;
for (Edge *e = v->firstEdge; e; e = e->next) {
if (e->flow < e->capacity && e->to->dist > v->dist + e->cost) {
e->to->dist = v->dist + e->cost;
e->to->inEdge = e;
e->to->flow = std::min(v->flow, e->capacity - e->flow);
if (!e->to->inQueue) {
q.push(e->to);
e->to->inQueue = true;
}
}
}
}
if (t->dist == INT_MAX) return false;
for (Edge *e = t->inEdge; e; e = e->from->inEdge) {
e->flow += t->flow;
e->reversedEdge->flow -= t->flow;
}
flow += t->flow;
cost += t->flow * t->dist;
return true;
}
void operator()(int s, int t, int n, int &flow, int &cost) {
flow = cost = 0;
while (bellmanford(&nodes[s], &nodes[t], n, flow, cost));
}
} edmondskarp;
inline void addEdge(int from, int to, int capacity, int cost) {
nodes[from].firstEdge = new Edge(&nodes[from], &nodes[to], capacity, cost);
nodes[to].firstEdge = new Edge(&nodes[to], &nodes[from], 0, -cost);
nodes[from].firstEdge->reversedEdge = nodes[to].firstEdge, nodes[to].firstEdge->reversedEdge = nodes[from].firstEdge;
}
inline void getDistances() {
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
dist[i][j] = dist[j][i] = std::min(std::abs(j - i), (n - j) + i);
}
}
}
int main() {
freopen("overload.in", "r", stdin);
freopen("overload.out", "w", stdout);
scanf("%d", &n);
int sum = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
sum += a[i];
}
int average = sum / n;
for (int i = 0; i < n; i++) a[i] -= average;
getDistances();
const int s = 0, t = n + 1;
for (int i = 1; i <= n; i++) {
if (a[i - 1] > 0) addEdge(s, i, a[i - 1], 0);
else if (a[i - 1] < 0) addEdge(i, t, -a[i - 1], 0);
}
for (int i = 1; i <= n; i++) {
if (a[i - 1] > 0) {
for (int j = 1; j <= n; j++) {
if (a[j - 1] < 0) addEdge(i, j, INT_MAX, dist[i - 1][j - 1]);
}
}
}
int flow, cost;
edmondskarp(s, t, n + 2, flow, cost);
printf("%d\n", cost);
fclose(stdin);
fclose(stdout);
return 0;
}