有 个工作, 种机器,每种机器你可以租或者买过来。每个工作(可以不做)包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成。求最大利润。
链接
题解
为每个工作和机器建点,增加源和汇。
从源点向每个工作连边,容量为利润;从每个工作向它需要的机器连边,容量为租用费用;从每个机器向汇点连边,容量为购买费用。
割源点连向工作的边表示不做工作,割中间的边表示租用一台机器,割机器到汇点的边表示购买机器。
所有工作利润的总和减去最小割即为答案。
代码
不知道哪里写错了,一直 MLE ……
#include <cstdio>
#include <climits>
#include <algorithm>
// #include <queue>
// #include <vector>
const int MAXN = 1200;
const int MAXM = 1200;
struct Node;
struct Edge;
struct Node {
Edge *e, *c;
int l;
} N[MAXN + MAXM + 2];
struct Edge {
Node *t;
int c;
Edge *next, *r;
Edge(Node *s, Node *t, const int c) : t(t), c(c), next(s->e) {}
};
struct Dinic {
bool makeLevelGraph(Node *s, Node *t, const int n) {
for (int i = 0; i < n; i++) N[i].l = 0, N[i].c = N[i].e;
// std::queue<Node *> q;
// q.push(s);
static Node *q[MAXN + MAXM + 2];
Node **l = q, **r = q - 1;
*++r = s;
s->l = 1;
while (l <= r /* !q.empty() */) {
Node *v = *l++ /* q.front() */;
// q.pop();
for (Edge *e = v->e; e; e = e->next) if (!e->t->l && e->c) {
e->t->l = v->l + 1;
if (e->t == t) return true;
else *++r = e->t; // q.push(e->t);
}
}
return false;
}
int findPath(Node *s, Node *t, const int limit = INT_MAX) {
if (s == t) return limit;
for (Edge *&e = s->c; e; e = e->next) if (e->t->l == s->l + 1 && e->c) {
int f = findPath(e->t, t, std::min(limit, e->c));
if (f) {
e->c -= f, e->r->c += f;
return f;
}
}
return 0;
}
int operator()(const int s, const int t, const int n) {
int res = 0;
while (makeLevelGraph(&N[s], &N[t], n)) {
int f;
while ((f = findPath(&N[s], &N[t])) > 0) res += f;
}
return res;
}
} dinic;
inline void addEdge(const int s, const int t, const int c) {
N[s].e = new Edge(&N[s], &N[t], c);
N[t].e = new Edge(&N[t], &N[s], 0);
(N[s].e->r = N[t].e)->r = N[s].e;
}
int main() {
int n, m, sum = 0;
scanf("%d %d", &n, &m);
const int s = 0, t = n + m + 1;
for (int i = 1; i <= n; i++) {
int w, k;
scanf("%d %d", &w, &k);
sum += w;
addEdge(s, i, w);
for (int j = 0; j < k; j++) {
int x, c;
scanf("%d %d", &x, &c);
addEdge(i, n + x, c);
}
}
for (int i = 1; i <= m; i++) {
int x;
scanf("%d", &x);
addEdge(n + i, t, x);
}
/*
static int w[MAXN];
static std::vector< std::pair<int, int> > used[MAXN];
static std::vector<int> borrow[MAXM];
static std::pair<int, int> buy[MAXM];
int id = n + 1, sum = 0;
for (int i = 1; i <= n; i++) {
int k;
scanf("%d %d", &w[i - 1], &k);
sum += w[i - 1];
for (int j = 0; j < k; j++) {
int x, c;
scanf("%d %d", &x, &c);
int t = id++;
used[i - 1].push_back(std::make_pair(t, c));
borrow[x - 1].push_back(t);
}
}
for (int i = 0; i < m; i++) {
scanf("%d", &buy[i].second);
buy[i].first = id++;
}
const int s = 0, t = id++;
for (int i = 1; i <= n; i++) {
addEdge(s, i, w[i - 1]);
for (std::vector< std::pair<int, int> >::const_iterator it = used[i - 1].begin(); it != used[i - 1].end(); it++) {
addEdge(i, it->first, it->second);
}
}
for (int i = 0; i < m; i++) {
for (std::vector<int>::const_iterator it = borrow[i].begin(); it != borrow[i].end(); it++) {
addEdge(*it, buy[i].first, INT_MAX);
}
addEdge(buy[i].first, t, buy[i].second);
}
*/
int maxFlow = dinic(s, t, n + m + 2);
printf("%d\n", sum - maxFlow);
return 0;
}